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ABSTRACT

The variabiiity of orchards ensures that their identification and
classification is difficult. Examination, therefore, of the variation
within and between individual orchards, and between different types and
varieties should enable the possibilities and Iimitations of
classification to be better defined. Using principal components analysis
to describe the maln axes of variation this study investigated basic
orchard pixel distribution in Landsat thematic mapper spectral space.

The major cause of varlation, as Indicated by the first principal
component, was the Increasing contribution to the reflectance from the
soll as tree cover was reduced. This component, basically an axis of
brightness with a positive welghting In all reflectance bands except band

- 4, distributed plxels on the proportion of low valued vegetation to high
valued soll. The second component, a band 4 and band S comblination, was
related to the proportion of tree cover to vegetation and of tree cover to
sofl based on vegetation differences. \

The first component was mainly affected by orchards with & sofl
background, whereas orchards with a vegetation background were mainly
distributed along the second component axis. A further principal
component analysis was carried out on each of these subgroups. Strong
correlations between orchard crown cover and one of the main principal
components from each of the two subgroups enabled a transformed space
to be tentatively defined indicating the relative contributions from tree
cover, vegetatlon background, and soll exposure.

The approach to spatlal characterisation s through the use of
Fourfer transform analysis. There are, however, problems to this
appproach; the small size and varying orlentation of the orchards mean
that few orchards can be sampled Into a regular array on which a
standard FFT can be performed. The training site needs to be extended,
obeying the laws of periodicity, to (ill a rectangular array. This paper
outlines an approach to this problem.

*presented at the Twenty First International Symposium on Remote Sensing of the Environment,
Ann Arbor, Michigan, October 26-30, 1987.



Introduction

with Landsat thematic mapper (TM) imagery, separation of orchards from woodland and
classlification of orchard type based solely on spectral characteristics are difficult. Orchards
are diverse, ranging from those which are Intensively managed, with dwarf trees and exposed
soll backgounds, to those virtually abandoned, with large old trees and unmanaged undergrowth.
Tree type, variety, helght and spacing, planting pattern, and row orientation, together with
imposed environmental conditions, ensure that virtually every orchard {s unique in some manner.
The complex interaction of these attributes ensure great spectral and spatial variability In the
reflectance sensed by the satetlite.

Gordon et al. (1986b) were not able to separate orchards by type but, using the more uniform
spatial characteristics of orchards, were able to separate them from woodland. This gave good
classification accuracles but a high rate of omisston. wWhere Gordon et al.(1986b) addressed the
variation between orchard and non-orchard vegetation, this study Is concentrating on the
variation within, and between, individual orchards; both within the same type (e.g. apples) and
between types (e,g. apple versus pears, peaches and cherries). Examining the data structure,
identifying major axes of variatlon, and Isolating relationships between orchard attributes and
their spectral, and spectrai-spatial, response will enable the limits and possibilities of
classification to be better defined with TM as well as other high resolution satellite data.

This paper presents preliminary findings of an analysis of the basic orchard pixel
distribution In TM spectral space. From relationships between spectral structure and orchard
crown cover, a transform space, describing the interactions between crown cover and the soll-
vegetation components of the understory, Is suggested. An approach to spatfal characterisation
is also outlined.

Background .
The study area is In Orieans County, N.Y., on the south shore of Lake Ontarlo. In all, 120
orchard training sites were chosen throughout the county based on aerial photographic
interpretation, advice of extension agents, and fleld checking. Typical of New York orchards, the
training sites were mostly 2.5 to 4 ha, but some stands reached 25 ha. in size. The sites were
located and outlined on an August TM scene. The Image date, being post-harvest, was chosen to
reduce confuston with field crops In subsequent classifications. ’

The analysis is being carried out on a microcomputer (1B AT) using custom-written 1magé
processing software. In order to define a spatial analysis methodology some of the research will
be carried out on Cornell University's supercomputer (IBM 3090 with attached processors).

Spectral Characterisation
The initial approach to describing orchard spectral variation has been through principal

components (PC) analysis. Interpretation of the PC axes is primarily a reasoned analysis relating
vector loadings with an interpretation of plant and soll spectral response. Ernphasls has been on



using orchard pixels, though some analyses have examined the distribution of orchard means and
stanaard daeviations In PC space A PC analysis was also carried out on two subgroups of the
orcnard data set; those orchards with a soil background and those with an entire vegetation
background. The correlation between orchard crown cover and each of the subgroup's major PC
a4e5 was found In order 1o assess whether crown cover was a major factor in orchard variation
and also whether any of the axes could be used to approximate crown cover. An estimate of
crown cover was obtained by digitising low altitude aerial photographs with subseguent
thresholding. A cover estimate (percentage) is then just based on pixel proportions.

. .

The PC loadings obtained using the whole orchard data set are shown in Table 1. The first
three PCs account for 98% of the total variation. The first axis, accounting for 82% of the
variation, is dominated by orchards with soll background which stream away from the main
cluster (Fig. 1). This axis is similar to the tasseled cap's brightness axis, defined by Crist and
Cicone (1984), in that there is an almost equal contribution from all reflectance bands. One
difference is that the weighting from band 4 is negative, indicating that any vegetation
component tn a pixel will lower the value of that pixel. The amount that the value is lowered is
primarily dependant upon the type of vegetation, its leaf area index (LAl), and its proportion to
the soil. Differing soil reflectance would also be expected to modify the pixel value, however,
the orchards in this scene were on similar soils.

The second PC axis, accounting for 12% of the variation, consists of a band 4 and band S
combination, bearing little relation to any tasseled cap features. It would be expected that
different plants reflect differently in band 4 because of leaf structure and varying leaf
densities. It has been shown that reflectance for leaves varies asymptotically until a LAl of
about eight 1s reached (Wiegand et al, 1979). This is the basis of vegetation clasSication and
bromass estimation 1n the near-infrared. Any soil component, though, will change the overall
radiance according to its dominance in the pixel field of view. If the soil-vegetation contrast is
reasonably hign, then the refiectance 1s strongly related to plant cover, and variations in leaf
density are only a secondary factor (Satterwhite and Henley, 1982). Furthermore Franklin (1986)
found a nonlinear relationship between band 4 and biomass in coniferous forests; as the canopy
closes, shadowing reduces the band 4 reflectance. in orchards the effect of shadowing should
also vary with row orientation.

Studies on leaves 1n the mid-IR region relate reflectance to leaf water content (Everitt and
Nixon 1986). Absorption by water increases as the water content of the leaf increases (Allen et
al. 1970). There are some leaf structure effects, however. The response to leafl density in this
region is normally saturated at a LAl of about two (Wiegand et al. 1979). It has been found that a
ratio of band 4 to S could monitor leaf water content (Rock, 1982). Nevertheless, using TM data on
a forest canopy, Horler and Ahern (1986) found that mid IR was a measure of vegetation density,
whilst studies on rangeland by Ahern et al. (1981) concluded that the sensitivity to biomass, as
opposed to leat water content per se, was due to this region being particularly sensitive to
shadowtng Other workers have found significant information for separating cover types in the
rid-1R region (e.g., Nelson et al ,1984)

501 reflectance 1n the near-IR usually has a lower reflectance than vegetation and vice
versa in the mid-IR. (Leamer et al,, 1978) Therefore, since soils in the study area are similar
their reflectance Is going to be constant in both bands and sum to a constant. Assuming a high



soil-vegetation contrast, the effects of variations in the tree vegetation itself are likely to be
secondary to the soil-vegetation proportion. Leamer et al. (1978) used the reflectance
differences at 0 9,1 65, and 2 2 urn to separate wheat from soil.

In the orchards with a vegetation background, the band 4-band S combination 1S more
complicated. If there Is a significant tree-understory contrast, then the response, as with the
soll, 1s golng to be related to cover area. The weaker the contrast, the more the amount of
biomass and leal water content are going to affect, and dominate, the reflectance. The effect of
fluctuations in blomass, within a vegetation group, I1s somewhat moderated by the opposite
responses of these two bands (Horler and Ahern, 1986). The relative band 4 and S weightings are
going to affect the separability. Any soil component in the understory will move the reflectance
towards the soil “constant” depending upon its exposure In the understory.

Despite the high correlation of band 7 with band 5 there is virtually no contribution from
band 7. This indicates significant differences, In this context, between the two spectral reglons.

The third PC axls has certaln simllarities to the wetness band (Crist and Cicone, 1984),
except that the contribution from band 7 1s negligible and greater emphasis is given to the
visible region. Horler and Ahern (19806) note that "wetness™ is a misleading term as the mid-IR
response is not always strongly related to leaf moisture content. Variation with band 6 is being
introduced at this stage, indicating a possible role for thermal properties In "wetness” mapping.
Owing to the different spatial resolution of this band, 120m, 1t is uncertaln what emphasis (t

should have.

.,
",

Means and standard deviations of orchards are illustrated in Fiqure 2. Here, the cross
indicates the position of the mean In the three component space; the length and direction of the
axes from the means represent one standard deviation in each axis direction. As expected the
distribution of the means follows the distribution of all orchard pixels, especlally In the less

dense reglons. This Indicates thal, i the overall pixel distribution, 1t Is variation between,
rather than within, orchards that Is dispersing the data. Orchards toward the edges of the
distribution, however, tend to have larger within-orchard variatton, particularly the soil-

background orchards as they diuper we Irom the maln orchard group This Is most likely due to the
contrast between soils and trees being greater than that between vegetation and trees so that
the within-orchard range 1s larger ar«d nence has a larger standard deviation. Variation in soil
characteristics throughout the orchard, without the disguising effect of a vegetation cover will

also add varlability.

The alignment of the two orchard subgroups, soil and vegetation background, along the PC
axes enables their individual var ration and relationship to the complete group to be investigated.

Qrchards with Sol) Background

Results of the PC analysis using only orchards with exposed sall backgrounds are given in
Table 2. As with the first PC trum e complete orchard set, the first component here bears
certain simtlarities to tassvled cap i nihitness The main differences afre the complete avbsence
of a band 4 weighting, and an 1nvieased contribution from band 7 Dropping band 4 removes a
mafjor source of vegetation variotinn 25 a result, separation Is atmost entirely due to the
relative brightness of the soll ., cpeoed Lo vegetation A reasonably high band S and bandg 7



correlation with the visible bands ensures that they emulate each other as a measure of scene
brightness (Guyot 1984) That the response in this component is the proportion of "dark”
vegetation to “light” soii 1s also indicated by the high correlation, -0.89, of this vector with
orchard crown cover (Fig. 3). On this graph, the location of the orchard means in the first PC
relative to Lhe entire orchard tree crown cover 1S Indicated.

The second PC becomes virtually a band 4 component. The response Is dictated by vegetation
type (on the basis of leaf structure), vegetation density (on the basis of leaf density), and plant
structural characteristics modified to a greater or lesser extent by the soil response. There is
poor correlation, -0 24, of this vector with orchard crown cover.

Except for the low contribution from band 4, the third component Is similar to the "wetness”
vector (Crist and Cicone, 1984). tinlike the third vector in the full orchard group, however, band 6
is not a component in this vector. Correlation of this vector with crown cover is also relatively

low (-0.44).

Orchards with Vegetation Background

The nucleus in the full orchard distribution of Figures 1 and 2 are orchards with a vegetation
background. Although orchards with the most complete understory were chosen for this part of
the analysis, 1t Is difficult to find orchards that have no disruption of the understory.

The vector matrix (Table 3) shows, by the low first vector contribution of 55%, that there is
much less directionality than occurs in both the full and sofl background orchards, likely because
of the reduced soil Influence. As expected, the first PC bears a strong resemblancg to the
tasseled cap greenness, having a moderate negative weighting In all bands except band 3 which
has a strong positive weighting Differences occur in that the visible region 15 de-emphasized
and a much greater contribution comes from the mid IR reglon. This latter difference can be
attributed to the small range of vegetation types, different canopy stuctures, and rigid
distributions. Being a reasure of vegetation differences, and pixels being a mix of vegetation
types, there is only a poor correlation, 0.04, between orchard crown cover and this principal

cornponent.

The second PC, which accounts for 27% of the variation, is simiiar to the second PC defined
by the full orchard set, primarily a band 4 - S combination. The other reflectance bands do have a
modest contribution in this vector though. The arguments about the tree-vegetation understory
interaction with the full orchard second vector also apply here. This vector's strong negative
correlation, -0.86, with orchard crown cover Is seen in Figure 4, lending validity to the
conclusion that this combination, with this weighting, is measuring the proportion of tree cover
to background vegetation. The high intercorrelation of many biological parameters does not imply
that tree cover is the only highly correlated variable. More research is neccesary to define other

parameters.

The third PC bears a resemblance to the third PC from the soil background orchards, except
that, in this case, a large weighting is given to the thermal band. There is a low correlation, -

0.18, between this vector and orchard crown cover.



Definition of Crown Cover Space v
The high correlations between orchard tree crown cover and both the first soil background

PC, and the second vegetation background PC, suggest the possibility of defining a spectral space
to map the relative contributions from the soll, vegetation, and tree crown. Figure S presents the
first stage In this process by plotting the first soli-background PC against the second
vegetation-background PC. The soll-background orchards are the squares around the top 1ine; the
crosses around the hottom line are orchards with vegetation background. The distance along
either line, away from the first PC axis, represents decreasing crown cover, although not
necessarily at the same rate on each line. The top axis goes to a point of soll and no vegetation;
the bottom line goes to a point of complete background vegetation. Orchards in the intervening
space consist, In theory, of a predictable combination of tree cover, soil background, and

vegetation cover.

A high correlation, 0.98, between the two PCs for the soil background orchards, and a
comparatively low correlation, 0.72, for the vegetation background orchards, adds validity to
these conclustons. With Increasing background vegetation the response in the 2nd PC direction
increases towards a level detined by complete background vegetation (ignoring variation in this
vegetation) as the proportion of tree vegetation to background vegetation is reduced. if no
vegetation background is present, however, the vegetation response depends entirely on the
proportion of tree in the pixel. If the relative band welghtings are correct, then the response
proceeds to a constant point defined by the soll alone. With the soll PC, however, all vegetation
appears dark compared with the soil so that varying proportions of tree to vegetation understory
have a reduced effect. Any increased reflectance iIn this PC s caused mainly by an increased

contribution from the brignter soil. .

'y

Obviously, the tree-soli-understory vegetation space could be transfomed and calibrated to
the x and y axis. The space also needs to be tested more rigorously.

Conclusions

Orchard data distribution in TH spectral space Is basically three dimensional; the first three
components account for O8% ot the varmation.

whilst there are certain similarities between the first PC and "brightness” (Crist and Cicone,
1984), there is significant dissimlarity; primartly from a negative band 4 weighting ensuring
that any vegetation will have a low value in this component. This suggests that the first PC is
providing a measure of vegetation to soil cover, based on the vegetation-soil contrast.

The major axis of variation is primarily driven by the differences in the soil background
orchards. The simflarity between the first soll background PC and that from the full orchard set
emphasises this. As the soll background PC is mainly deallng with a single vegetation group,
fruit trees, the vegetation "normalising” carried out by a negative band 4 in the full orchard PC,
15 no longer apparent. A strong negative correiation between the soil background orchards’ first
PC and orchard tree crown cover summarises the tree-soil relationship.

The effect of varying soll type is uncertain as the exposed solls were similar.

The second PC for the overall data set 1s a complete departure from others reported. This



vector, aband 4 and 5 combination, is providing information on the proportions of tree cover to
soil exposure, and tree to vegetation cover, being driven by tree-soil, tree-vegetation, and
vegetation-sail contrasts. A strong correlation between the vegetation-background second PC,
and Lhe sirnllarity ol this vecton to the tall orchard second PC supports this conclusion.

. The abliity to define axes related to crown cover, and their close relationship to the major
variation axes in the full set, suggests the mapping of a vector space which can define major
orchard variation In terms of the relative proportions of tree, background vegetation, and sofl
influence.

Work is ongoing to test these conclusions and assumptions, and to consider the effect of soil
type, shadowing caused by tree size, planting pattern and row orientation, and tree type and
other variables.

SpatlalCharacterisation

There Is significant textural information with TM data and automatic recognition of orchards
should be possible. Although there are many approaches to describing textures, patterns, and
spatial distributions. (e.q. Fu, 1982, Haralick, 1979, Viinrotter et al., 1986), there is no single
technique that is sufficiently rabust and easily used. Since the Fourier transform provides the
rnost cornplete specificalion of the spatial characteristics related to texture, 1t is reasonable to
expect that texture can be rust effectively described, if not defined, in terms of spatial
frequency distributions. The concept of using Fourifer transforms would seem to provide ¢ bridge
between the qualitative description of texture and a quantitative, numerical desgription required
for pattern recognition. Fourier transform techniques would be considerably more powerful than
the filtering technigues that were used by Gordon et al. (1986a).

Approaches to using the Fourier transiorm have been varied; (e g D'Astous and Jernigan, 1984
Gramenopoulos, 1973, Hornung and Srith, 1973, Kirvida, 1976, Jernigan and D'Astous, 1984,
Lendaris and Stanley, 1970, [laurer, 149/7.1, Weszka et al,, 1976, ). There are, however, several
difficulties assoclated with using the Fourier transform in this type of study The small orchard
size, with varying orientation, and the 30 m spatial resolution of the imaqgery, ensure that there
are few orchards large enough to create even an 8 x 8 training set needed for the smallest,

standard, tast Fourier transform Inuider to 11l a rectangular training sample, the sample must
pe synthesised from a full orchiard training site Yaroslavsky (1983) documnents various periodic
extension procedures applied ta pictue processing These methods , though, distort the signal

structure unnaturally by forcite) o piedefined relationship between the often discontinuous
wraparound edges of the actual siynal Le.quences

in order to retain the integrity «f tte (d3ta, the approach adopted here has been to use the
sampling theory. Sampling theory <i)j--t5 that an image, consisting entirely of a particular
texture, when multiplied by a mask witn =ize and shape of the training area but with unity inside
the area and zero outside, will resuil an the training site image. Inerefure g site 1S the product

of a texture and a mask. In order 1o recieate the texture It would be necessdry to divide the
training site by the mask, which uhviva iy cannol be done However 1t would seem possible that,
using the periodic properties of the o rer Lransform, the division Levormies o deconvolution of
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the transform of the mask with the transform of the training site. In effect this hecomes a
series of linear simultaneous equations. Solving the resulting large system of linear equations is
not easy; the fact that ofien the system 1s nearly coilinear, and often with less than full rank,
fmeans that, even wilth singular value decomposition and least squares approximation an

acceptable solution s dIfficult to achieve.

Current Investigation is underway to resolve this situation.
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Table 1. Eigenvector (principal component) metrix for the complets orcherd set.
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Table 2. Eigenvector { principal component) matrix for the soil background orchard set
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Table 3. Eigenvector ( principal component) matrix for the vegetation background orchard set.
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Table 4. Correlation batween sub group orchard crown cover and its eigenvectors.
The sub groups are soil background, and vegelation background, orcherds.
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